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The energy expression of the MO-LCAO scheme is corrected approximately for the 
left-right correlation such that it leads to the correct dissociation limit. Together with 
the correlation correction a correction is applied to the interference term, whereas 
the sharing penetration effects are neglected. The derivation of this corrected approxi- 
mate energy formula is suggested from an analysis of binding in H~ and H 2 . The bind- 
ing energy consists mainly of three contributions: interference, quasiclassical inter- 
action, promotion. Two-electron interference contributions are absorbed into the one- 
electron terms. The basis dependence of the fragmentation of the binding energy is 
discussed and an appropriate hybrid basis is constructed. Rotational invariance is 
found to a high degree of accuracy. In terms of the proposed scheme the binding in 
several diatomic and polyatomic molecules is analysed. The individual contributions 
to the binding energy turn out to be physically meaningful. 
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1. Introduction 

One of the most challenging problems for theoretical chemists has been the elucidation of 
the physical nature of the chemical bond. The concepts of the "chemical bond", like that 
of "partial charge of an atom in a molecule", "electronegativity" etc., have their origin 
in the descriptive chemical theory that has been developed before or during the early years 
of quantum mechanics. These concepts have proven rather useful for a better understanding 
of chemical facts but it turned out to be rather difficult to give them a precise meaning in 
the context of rigorous quantum mechanics. 

In order to get an insight into the physical mechanism of the chemical bond one has to 
break the binding energy into fragments [1-3]. Such a fragmentation can in principle be 
done in an arbitrary number of ways but it will serve its purpose only if the fragments 
exhibit a regular behaviour corresponding to a physical model and are thus amenable to 
physical interpretation. Although the application of the very general and most elaborate 
of the existing schemes for such an analysis, namely that initiated by Ruedenberg [2], 
to a number of molecules ([4] and references therein) yielded some interesting results, it 
is made apparent that one easily looses the direct connection to a simple, pictorial model 
of molecule formation and that a closer look on the simplest possible molecule, H~, was 
desirable. 
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Careful examination of the bonding situation in H~- by Ruedenberg and coworkers ( [5], 
see also [6] ) revealed that fragmentation of the binding energy into quasiclassical, pro- 
motion, and interference parts furnished a useful scheme for the understanding of bond 
formation in this molecule. Due to the presence of electron-electron interaction the 
situation in a two-electron bond is much more complicated [2]. Nevertheless we regard 
it as worth-while to examine the question: to what extent can the simple fragmentation of 
H~- be maintained in the general case, and which modifications are necessary? 

In Sect. 2 we introduce the basic considerations and concepts that will guide us in the 
following derivation. These concepts are developed from a comparison of the bonding 
situation in H~ and H 2 . The derivation in Sect. 3 starts from the expectation value of a 
LCAO-MO wave function for a dosed-shell molecule and after an approximate correction 
for the left-right correlation ends up with a partitioning of the binding energy into quasi- 
classical, promotion, and interference parts. Sect. 4 deals with invariance problems, 
especially the basis dependence of  the general derivation. Finally, in Sect. 5 we present 
some results, mainly for the homonuclear diatomics and a number of hydrocarbons. The 
results show how the different bonding situations are reflected in our fragmentation, the 
physical content of which is discussed. 

2. Basic Considerations: H~- and H 2 

In this section we briefly review the bonding situation in H~- within the MO-LCAO approxi- 
mation in order to develop and define the conceptual tools for the general derivation in 
Sect. 3. From a comparison of the MO, VB, and two-determinant wave functions for the 
two-electron bond in H 2 we will get an idea for a simple correction of the "unphysical" 
asymptotic behaviour of the MO energy expression for R -+ oo by approximately taking 
into account the left-right correlation of the bonding electron pair 1 . Later on we will 
generalize this correction for any closed-shell molecule (Sect. 3). Thus, we start from the 
basic assumption that the essential features of a covalent two-electron bond in any mole- 
cule are the same as in H 2 . Obviously, this does not hold for delocalized or strongly polar 
bonds, so our general derivation will be reasonably justified only for localizable, unpolar 
or weakly polar bonds. 

2.1. Bonding in H~ 

In the simplest possible molecule, H~ [5, 6] the bonding situation can be elucidated by 
a fragmentation of the binding energy into quasiclassical, interference, and promotion 
energies. This fragmentation can be visualized as corresponding to subsequent steps in 
the "process of bond formation", when a hydrogen atom and a proton are brought together 
to form H~-. In the physical reality there are no such steps, of course, but they can, never- 
theless, serve as pictorial concepts that help to better understand the actually rather 
complex situation. In the case of H~- it turns out that a simple minimal basis MO-LCAO 
ansatz is able to describe the essential features of the bonding situation to a good degree 

of accuracy. 

1 A proper dissociation behaviour could as well be achieved by using an UHF wave function instead 
of the RHF ansatz, but this would not improve the potential curve in the vicinity of the equilibrium 
distance. The approximate inclusion of left-right correlation, on the other hand, lowers the energy at 
all internuclear distances and is likely to give more reliable binding energies than RHF or UHF wave 
functions. 
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2.1.1. Quasiclassical Energy 

Consider a hydrogen atom and a proton at large internuclear distance R. By a and b 

a = N e  -~ra 

b = N e  -nrb 

we denote two hydrogen-like (r~ = 1) atomic orbitals, centred at nucleusA and B, 
respectively. The probability of finding the electron at nucleus A (electron density p = 
a 2) or at nucleus B (p = b 2) being equal, we get the total quasiclassical density as 

pQc = �89 2 + b ~) (1) 

The quasiclassical picture is based on adding atomic densities rather than wave functions; 
it hence ignores all interference effects. 

The corresponding energy is 

E = E(H) + EQC (2) 

where E(H) is the energy of a hydrogen atom and 

1 
E e c  : ~ - (b : o~) (3) 

is the quasiclassical (electrostatic) energy. 

The "penetration integral" (b : aa) is given by 

(b: aa) = f  la(r~[2  d'c 
.1 r b 

For large distances R one has 

1 
(b : aa) ~ ~ , EOc -~ 0 

For distances where nucleus B penetrates into the "electron cloud" around A, (b : aa) < 
1/R, so Eri c becomes repulsive. This repulsion is significant only for distances smaller 
than the equilibrium distance in H~. 

2.1.2. Interference Energy 

Instead of adding atomic densities (quasiclassical situation) we have to add atomic wave 
functions, i.e. 

1 
- [2(1 + S)] 1/2 (a + b), S = fab dr (4) 

which gives rise to interference effects: 

p = [ ~ 1 2  _ 1 
2(1 + S-------) (a2 + 2ab + b 2) = PQC + Pt 

where PQC is given by (1) and the interference density by 

1 1 
PI = ~ [ab - 1S(a2 + b2)] = ] - ~  [ab - SpQcI (5) 
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Eq. (5) shows that interference shifts the electron density partly from the vicinity of the 
nuclei into the bonding region. Furthermore, Eq. (5) allows for a useful interpretation of the 
Mulliken approximation [7] in terms of quasiclassical and interference densities that will 
be important in the general derivation (Sect. 3). An orbital product ab "contains" a quasi- 
classical part, �89 2 + b 2), which is the contribution of the respective Mulliken approxi- 
mation to it. The difference, ab - �89 2 + b2), can then be interpreted as interference part 
of ab, i.e. as "purely quantum mechanical effect". 

With the definition of  the one-electron operator (atomic units are used throughout this 
work) 

1 1 
h = -�89 . . . .  

ra rb 

the energy of H~ with wave function (4) is in an obvious notation given by 

1 1 
E = 2(1 + S-~---'-) (haa + hbb + 2hab) + -R 

1 1 
=haa +-i--~ [3`-�89 +hbb)l  +~ 

1 
- (b :aa) + 

= a + l + S  

= E(H) + E I + EO_ c (6) 

The one-centre parameter c~ (in this case simply the energy of a hydrogen atom), the 
"resonance integral" 3' and the "reduced resonance integral"/3 are given by 

oL=(a - � 8 9  a a~ 

7 = hab /3 = hab -- �89 +hbb) (7) 

The name "reduced resonance integral" (first used by Mulliken [7] ) for p is apparent from 
Eq. (7): t3 is the difference between hab and the Mulliken approximation to hab. The inter- 
pretation given above applies, i.e./3 contains just the interference effects. Therefore 

/3 
E •  

I + S  

is called "interference energy". The interference is the dominant effect of bond formation 
in H~" and Ez gives the bulk of the binding energy. E I is negative at all distances R > 0, and 
has its minimum near the equilibrium distance Re of H~-. 

2.1.3. Promotion Energy 

A wave function that can be taken as a reasonable approximation for the exact one ought 
to obey the virial theorem. This is not the case with wave function (4) if a and b are hydro- 
gen ls orbitals (exponent 72 = 1). A variation of ~(R) yields an energy minimum for 

= 1.25 at R = Re. With this contractive promotion of the ls orbitals (4) fulfills the virial 
theorem, and the following changes of the energy fragments in (6) are observed. 

EQc remains essentially unchanged. There is a pronounced decrease of the reduced 
resonance integral/3 and thus of E x which is partly compensated by a slight increase of the 
parameter c~. This increase of c~ is the net effect of a strong increase of the kinetic energy 
part and a strong decrease of the potential energy part of c~. a is called the energy of a 
hydrogen atom in a "promotion state". 
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The binding energy of H~ can now be written as 

~ = Ep + EI + EQc 

where 

Ep = ~ - ~ ( H )  

is the promotion energy. 

The order of the three steps in bond formation can equally well be taken in a different 
order, e.g.: 1) Promotion of an H atom to a state that is best suited for the final bonding 
situation (effecting a slight increase of the energy); 2) Switching on of the quasiclassical 
interaction of this hydrogen atom with a proton located at the equilibrium distance (also 
a slight increase of the energy); 3) Finally introduction of the interference effect, thereby 
overcompensating the first two energy increasing effects by an amount that is equal to the 
binding energy of H~o 

2.2. Bonding in H2 

As is well known, the MO wave function for a two-electron bond is an acceptable approxi- 
mation only in the vicinity of the equilibrium distance but shows an unphysical asymp- 
totic behaviour at large and intermediate distances. Thus, the MO energy expression cannot 
be regarded as an acceptable basis for our energy analysis but we have to take into account 
the left-right correlation in an approximate way. On the other hand, we have to start with 
the one-electron picture of the MO approximation in order to keep our energy expression 
as simple as possible. Furthermore, most of the former approaches to an energy analysis have 
been based on the MO approximation, and therefore we want to stay in the MO framework 
as far as possible. 

To get an idea for a simple correction of the MO energy let us compare the MO, VB, and 
two-determinant (CI) energy expressions for H 2 in a minimal basis. The wave functions 
for the MO and VB ansatz are 

1 
~ N O  - - -  [ a ( 1 )  + b ( 1 ) ]  [ a ( 2 )  + b ( 2 ) ]  

2(1 + S) 

1 
'IrvB - [2(1 +S2)I  1/2 [a(1) b(2) + b(1)a(2)] 

and the corresponding energy expressions (using the Mulliken notation for the two- 
electron integrals) 

EMO = 2c~ + 2/3 _ 2(b : aa) + 1 + �89 [(aa I aa) + (act [bb)] (8) 
I + S  
2S~ 1 S 2 

EVB = 2 a +  1+ S------2-2(b:aa)+-~+(aalbb)+2( 1 +$2~ [(aalaa)-(aalbb)] (9) 

In Eqs. (8) and (9) the Mulliken approximation has been applied to the two-electron 
integrals for a better comparison, i.e. we neglect the two-electron interference energy. In 
the case of H2 this is a very good approximation (see Sect. 6). 

E ~ o  and EVB differ in two terms: the interference energy 

E ~  ~ _ 2/3 
1 + s  (10 )  
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2st~ 
E~B - 1 +S 2 (11) 

and the two-electron energy 

E(M2~ = �89 [(aa l aa) + (aa I bb)] = �89 [(aa I aa) - (aa I bb)] + (aa I bb) (12) 

E(?) - S 2 
VB 2(1 + S 2) [(aa[aa) - (aal bb)] + (aal bb) (13) 

The best wave function within the given basis is a two-determinant ansatz which gives the 
energy (again the Mulliken approximation for two-electron integrals is applied) 

2S/3 1 1 
ECI = 2c~ - 1 - S z - 2(b : aa) + ~ + ~ [(aa [ a a) + (aa[ bb)] 

1 
+ 2(1 - $2~ [16/32 + [(aalaa) - (aal bb)] 2 ] 1/2 (14) 

It is seen that the interference and two-electron terms are unseparably connected by the 
last term in (14). But for large ( [ 4t3 [ ~ (aa I aa) - (aa [ bb)) and small (I 4/31 >> (aa [ aa) - 
(aal bb)) distances one can approximate the square root by the first two terms of the 
respective expansion. The error introduced into Ect by this truncation is < 0.001 a.u. 
for R ~< 2a o and R ~> 4a 0. If one adds the first term of the expansion to the corresponding 
(interference or two-electron) part of Eci and the second (coupling) term to the other part 
one gets a formal separation of interference and two-electron terms the result of which is 
shown in Fig. 1 together with the respective MO and VB energies. 

The energy expansion we are looking for should contain interference and two-electron 
terms that furnish a good interpolation between the respective CI values. Fig. 1 shows the 
failure of E~2o ) in this respect, but also EZMO exhibits an unacceptable behaviour for inter- 
mediate distances. The interpolation behaviour of the VB terms, on the other hand, looks 
rather promising but the two-electron term (13) is too complicated for our purpose. Now 

- ~(2) the first term in (13) should be very small at all distances, and indeed (see Fig. 1)~VB ~ 
(aa[ bb) is a rather accurate approximation. 

Thus, our sought-for simple energy expression is 

1 
E = 2 a + - - - 2 ( b : a a ) +  +(aalbb) 

1 +S 2 

= 2a +E I +EQc (15) 

and again we have a partition of the energy into one-centre, interference and quasiclassi- 
cal terms. 

If we regard ENO as a starting point we have to introduce two replacements into (8) in 
order to end up with (15): 

a) Replace �89 [(aalaa) + (aal bb)] by (aal bb) (16) 

2~ 2s~ 
b) Replace 1 +----S by 1 + S --'---~ (17) 

Both replacements have been suggested by approximately taking into account the left- 
right correlation of the bonding pair. That means, compared to the one-electron picture 
of the MO approximation, the left-right correlation causes a reduction of the one-centre 
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pair density in favour of the two-centre pair density and at the same time a decrease of 
the interference energy. The effect of these two changes on the energy is of opposite sign. 
The energy expression (15) is based partly on the MO and partly on the VB ansatz. Such 
a combination of the two approximations goes back to Mulliken [8] who followed this 
procedure in his construction of  a "magic formula" for atomization energies of  molecules. 

Fig. 2 shows the potential curve of H 2 calculated with (15) in a properly scaled minimal 
basis, compared to the MO energy and the "exact" potential curve, The improvement 
due to the change from (8) to (15) is very satisfactory but of course we cannot expect 
our simple formula to work equally well for other molecules. 
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2.3. Promotion State and Valence State 

In order to clarify the physical meaning of (16) and (17) we make use of the concepts of 
"promotion state" and "valence state" that are defined in the literature in a number of 
slightly different ways. We stick to the definitions of Ruedenberg [2] that are based on 
his analysis of  the one-electron and pair densities of the molecule. Both densities can 
formally be partitioned into one-centre and two-centre parts, and we call "promotion 
state" that hypothetical state of a free atom that has a one-electron density equal to the 
one-centre one-electron density of  this atom within the molecule. Thus, promotion of 
an atom means deformation of the atomic density (e.g. by contraction or hybridization) 
until it matches the molecular situation, and the molecular one-electron density can be 
regarded as the sum of the densities of atoms in their promotion states plus the molecular 
interference density. 

On the contrary, the molecular pair density can in no way be obtained by summing up 
the pair densities of promoted atoms and an interference part. This fact can most easily 
be seen by considering the H2 molecule. In a free hydrogen atom, promoted or not, there 
is no intra-atomic pair density whatsoever, but in H 2 there is a considerable probability of 
ffmding both electrons at one centre, i.e. there is an intraatomic pair density. In the VB 
language one speaks of the increasing weight of "ionic structures" when the distance 
between two hydrogen atoms is decreased. This increase of intraatomic and the corre- 
sponding decrease of interatomic pair densities are referred to as "sharing penetration" 
by Ruedenberg [2]. In the process of bond formation the energy-increasing two-electron 
effect of sharing penetration parallels the energy-decreasing one-electron effect of inter- 
ference, and we have seen in the preceding section how intimately these two effects are 
connected with each other. 

Now we are in a position to define the "valence state" as a molecular entity in contrast 
to the promotion state that can be regarded as a hypothetical atomic entity. The one- 
electron densities of the two states are the same but the valence state differs from the 
promotion state by the increase of the pair density due to sharing penetration. 

Let us now again turn our attention to Eqs. (12), (13) and Fig. 1. From the above 
discussion it is apparent that the two-electron parts Of EMo and EVB differ in the 
respective term that can be attributed to the sharing penetration effect, i.e. decrease 
of interatomic in favour of intraatomic pair density: 

sP EMO = �89 [(aa t aa) - (aa [ bb ) ] 

S 2 
E s ~  - 2(1 + S 2~) [(aalaa) - (aalbb)] 

SP EMO is too large at all distances and we can correct it by taking into account the left- 
right correlation via a two-determinant wave function. At the equilibrium distance 
Re = 1.4a o this CI leads to a reduction Of EMS~ by 40%. E s ~  on the other hand is con- 
siderably too small, compared to Es~, as can be seen by rewriting the two-determinant 
wave function into the Weinbaum function [9], where "ionic terms" are added to the 
VB wave function. Finally, our simple energy expression (15) contains no sharing penetra- 
tion terms at all, thus the replacement (16) overshoots the correction for left-right corre- 
lation by neglecting a / /o f  the sharing penetration energy. This rather drastic approxi- 
mation has the very convenient effect that in (15) we have, besides quasiclassical and 
interference terms, only promotion state energies a, and that we do not have to bother 
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Table 1. Sharing penetration and interference 
energies (in a.u.) of Hz at R e = 1.4ao with and 
without scaling of the minimal basis AO's 

= 1 ~ = 1.193 

ESP E 1 ESP E 1 

MO 0.0608 -0.1512 0 .0937 -0.2374 
CI 0 .0326 -0.1390 0 .0589 -0.2227 
VB 0.0220 -0.1273 0 .0295 -0.1849 

about valence states. In the second correction (17) the error introduced by neglecting 
EcI  is partly compensated by a reduction of the interference term. Here we adopt the 

sp is relatively small compared to EsI  P, and because E~B shows VB formula because EVB 
the appropriate behaviour for small and intermediate internuclear distances. 

Table 1 shows the sharing penetration and interference energies of H 2 at Re = 1.4a o in the 
different approximations with and without scaling. In order to get the CI values the 
expansion coefficients in the two-determinant wave function have to be known. EcI can 
then be written as 

(11 ) I _ S  2 ~+ ~ +  ( Jaa -Jab )  

= 20~ +EQc + E / I  +E SP 

and a separation of interference and sharing penetration terms is possible. The proper 
values of cl and c2 atRe are 0.995 and -0.101, respectively. 

The sum of the correlation correction (16) and interference correction (17) overshoots 
_ sP the CI energy by 2x - - E e l  + (E/B - E I I ) ,  and one has A = --0.021 a.u. independent 

of scaling. 

3. Derivation of the General Energy Formula 

With the definition of the one-electron operator 

(k denotes the kth electron, # counts the nuclei) the energy of a closed-shell molecule 
in the MO approximation can be written as 

E = 2  ~ hii + ~ [2(ii[ff)-(ifl/i)] + ~ ZuZz' 
i,/ Ruv 

i.zKu 

where i , j  run over the doubly occupied MO's. 

The MO's ~i are expanded in a given AO basis {X}: 

i 
~i = ~ C,asX#s 

i.z~s 
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(s counts the AO's at the centre #), and we get 

E 2 ~ , 2  i i + ~Z~ ,Zv  = c#sh#s, vtcvt (18) 
i l~,sv,t #~<v Ruu 

+ E E E Z Z ~i ~i j ~] [2(&vtl~uX.)_(UsX~lK~vt) ] ctAscvtC~u c hv  
i,] #,s v,t ~,u k ,v  

Now we split the two-electron integrals (psvt] Ku ~v) into their quasiclassical parts (given 
by the Mulliken approximation) and their interference parts, defined by 

[PsPt] KuXv ] = (PsvtlnuXv) 1 

+ (VtVtl KuKu) + (vtvtlXvXv) ] (19) 

The two-electron interference terms are contracted to one- and two-centre terms accord- 
ing to the definitions 

E~ = ~ Rus, utRuu,u v {2[UsPtlPutXv] - [UsPvlPu~t] } 
8~t~H~O 

gus, vt = E E RKu, av { 2[PsUtlKuXv] - [PsXvlKuUt]} 
,~,~ h,V 

(20) 

for #, v, ~, X not all equal 

(21) 

where 

R~s,u t = . C#sCpt 

The choice of (21) for this contraction is simple and reasonable but, of  course, arbitrary. 

In order to simplify the energy expression (18) we have to introduce charge and bond 
orders in the following way: 

Covariant coefficients: di~s = E S#s, vtcit 
V,t 

Charge qus = 2 ~ cusdusi i 
i 

C#sdvt I 
Bond orders p(1)us, vt =2 ~ i i 

(2) = 2 ~ i i 
P#s,  vr i C#sCpt 

(3) i i = dusdut P us,~t 2 ~i 

_ 1(~(1)  r~(1) r~(2) r~(3) h 
-- 2 W#S,  Vtt~Vt,#s + P tiS, VtP #s, vt  ) 

2 
P~s,  ut 

(22) 

(23) 

(24) 

Eq. (22) is simply Mulliken's charge definition [10] but (24) has not been used so far. 
In Sect. 4 some properties of this bond order definition will be examined. 

With the help of the definitions (19)-(24) Eq. (18) can now be written as 

E = 2 ~  i i Cu,shus, vtevt + ~ ~ [�89 1 2 -- gPus, vt] (PsPs l vrvt) 
i tA~8 P~t tl,8 P,t 

+ _ _ +  G + E E  2 , i auv i #,s u,t c # s g # s ' p t C v t  
(25) 
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The matrix elements of/~ contain one-centre, interference, and quasiclassical parts that 
we want to separate by defining the following parameters: 

1. A one-centre parameter 

that is simply the energy of the AO ;%s in the field of nucleus p. 

2. hus, v t ($t & 0 contains three-centre penetration integrals. By the definition of a 
resonance parameter 

(26) 

K 

(27) 
t~(#u) ~(# v) / 

only the interference parts of these three-centre integrals are retained whereas their 
quasiclassical parts (last term in (27)) enter into the quasiclassical energy to be 
defined below. Thus ~ is a two-centre parameter plus three-centre interference 
terms. 

3. The appropriate definition for a reduced resonance parameter is therefore (as in 
the case of H2) 

gSus, vt(aus + avt) (28) 

3us, ut contains all of  the two- and three-centre one-electron interference terms 
contained in hus, v t. 

Finally we have to deal wRh the two-electron interference terms, and at this point the 
arbitrariness of (21) becomes apparent. But it is not unreasonable to consider gut,us as an 
additional one-centre (Ps) parameter arising from the existence of interference density in 
the molecule, and g#s, vt (P r P) as an interference parameter mainly arising from the inter- 
action with all of the Coulomb charges. 

Thus, with the definitions 

"Ylls, vt = ~#s, vt + �89 vt (29) 

we can consider the/3parameters as containing all one- and two-electron interference 
terms. 

Inserting (26)-(29) into (25) gives the energy expression 

' ~ . .~. . , . ,~ . ,  + �89 E 2: [qusqvt-  ~Pus,,t] x 
(t~,s)r (v,t) i u,s v,t 

[ ZuZvRuv s ] (~,~l ~,.~) + ~ - z .  y q.,(~: ~,.~) - z .  1~ qM~: ~ )  (30) 
# < v  t 

The second and third term in the last sum in (30) contain the quasiclassical terms removed 
from hus, v t in Eq. (27). 
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So far we have been busy with a rearrangement of the MO-LCAO energy (18), and Eq. (30) 
shows the same unphysical behaviour for large distances as does (18). For example in the 
case of H e q .  = q~ = 1 and p 2  = 1 for aU R, so the third sum in (30) yields E~])o of Eq. (12). 

Now, we have to generalize the correlation and interference corrections (16) and (17). A 
straightforward extension of the correlation correction (16) is: 

a) Replace I 2 1 2 -- $Pus, vt(IdsUs I PtPt) by - gP#s, vt [(listls [lislis) + (12tvtl PtPt)] (31) 

ifp#s, vt > 2  0 (as is usually the case, see Sect. 4) (31) apparently leads to an energy decrease. 

For the general interference correction we cannot retain the formula (17) because it works 
well only in the case of He and some other similar bonds. So our procedure is as follows: 

b) Replace fius,vt by ~us, v t (  1/31 ~< l~[) in such a way that the corresponding energy 
increase compensates the same percentage of the correlation correction as Eq. (17) 
does in the case of H e . (32) 

Our final energy expression, split into one- and two-centre and one- and two-electron parts, 
then reads 

E= ~ E. + ~ Eu,, 
# . u < v  

where E# -- E(1) + E  ( 2 ) #  # , Euv = E  ( t )  +E(e)#v 

( 1 ) -  ' i i E• - ~. q u s % s  +2 ~ ~ c.s/3#s, u tc# t  
s i s,t 

(2 ) -  1 2 1 2 1 2 EU - g  ~ [ (qus )  - g  ~ 2 Pus, v t - -gPus ,as] (#s#s l t i s#s )  
s L v(4=#) t a 

1 t 1 2 + t 
+ ~ ~ [qusqut -- ~P~s,~t] (l is#sll i tgt)  E# (33) 

s,t 

E ( 1 ) - 4  x;' x;' c i R ,pi p.v - z. z:. #s~'#s, vr-vt 
i s,t 

2 Z~Z~ 
E(v) : ~ q#sqvt (#s#s lUtv t )+ R - Z #  ~t qvt~u: vtvt)  - Z v  ~s q#s(V: #slis)J 

s,t #v 

Remember that E (1), E(~ ) do not denote pure one-electron terms but contain the two- 

electron interference terms as well. 

If we write the energy of the isolated atom # as 

(n#s = occupation number of AO Xus) we get the binding energy of the molecule as sum 
of promotion, interference and quasiclassical terms, defined by Eqs. (34): 

•<v u<v (34) 

AE = Ep + E1 + EQC 

If the molecule is not described by the same AO's as the free atoms, e.g. in the case of scaling, 

different a~s have to be used in E O) and Esnusaus.  
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4. Basis and Rotational Invariance 

In the preceding section we did not impose any restriction on the AO basis {X}, so the 
formulae, in principle, are valid for minimal or extended bases, canonical or hybrid AO's. 
But the crucial points in our derivation, i.e. correlation and interference correction (31), 
(32), and the splitting of the two-electron energy by (19) are very sensitive to the choice 
of basis. Before we consider this problem in detail we need to know some properties of 
the bond order definition (24), because the correlation correction (31) as the main 
correction to the SCF energy is proportional to p2.  

4.1. Properties of  the Bond Order 

In the literature there exist a large number of different "bond order" definitions (see e.g. 
[11 ] and references therein). The adoption of a particular definition is usually suggested 
by the choice of wave function and approximations (e.g. neglect of  overlap) or by a 
physical requirement that the definition should fulfil. The former is true with our defi- 
nition, and indeed a similar (but simpler) form of a bond order has been defined in a 
paper of Ruedenberg [12] that deals with an energy partitioning within 1r-electron theory 
where overlap between next neighbours is taken into account. Apparently, the choice of 
an MO-LCAO wave function in a non-orthogonal AO basis "naturally" leads to (24). 

Let us consider the first term in (24), i e , (1)  , (1)  This term looks like a generalization �9 . t - t~g~ l . , l ' k - ' p t , #  S .  

of the Wiberg bond index [13] (that has been defined in an OAO basis) to a non-orthogonal 
basis. In fact, it is an easy matter to show that the main property of the Wiberg index holds 
also for p(1), namely 

n ( 1 )  n ( 1 )  = 2qus - q~s t~ l~s,  v t F v t ,  l ~ s  
v~'l: 

(35) 

It is apparent from (35) that the total bond order of AO Xus cannot become negative and 
that its maximum value is 1, for qus = 1. If the charge of Xus is smaller or larger than 1, 
the total bond order decreases and reaches 0 for qus = 0 or 2. Thus, the first term in (24) 
corresponds to the concept of a "covalent bond"; the larger the polarity of a bond the 
smaller the bond order. I fxus  is involved in purely ionic interactions then the total bond 
order of Xus is zero�9 

Now we take into account the second term in (24). Instead of (35) we have 

2 = 
Pus, vt 2qus 

P , t  

(eus) 

1 2 ! ~ ( 2 )  r~(3) 
- -  2 q # s  - -  2P"  # s , # s t "  # s , # s  (36) 

An inspection of the definitions (23) suggests that the second and third terms in (36) 
should not be very different except for strongly antibonding interactions or very small 
distances (large overlaps), and our calculations indeed confirm this assumption. 

The total bond order of atom p can be defined as 

B . = 2 y p  2 .a',Vt 
S V#" 
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Inserting (36) gives 

, P l ~ s , g t  B =2~s q , s_s~  2 (37) 

The first as well as the second term in (37) can be written as trace of a product of matrices 
(density and overlap) that are transformed unitarily under a unitary transformation of the 
AO's of atom/~. Therefore, Bg is invariant under a unitary transformation of the AO 
basis. 

4.2. Construction of  the Proper AO Basis 

The correlation and interference correction are based on ideas that have been inferred 
from the H 2 molecule within a minimal AO basis. So they correspond to the pictorial 
model of a molecule consisting of (promoted) atoms and covalent two-centre two-electron 
bonds between them. That means that the two corrections are consistent in our concep- 
tual frame only if we apply them in a minimal hybrid AO basis. These hybrids should be 
oriented along the bond directions such that each of the two-centre bonds is formed 
essentially by two hybrid AO's. The corrections should then be applied only to those 
orbital pairs X~s, Xvt that build up a covalent bond. But the foregoing discussion has shown 

2 that such a hybrid AO gus will have only one matrix element P~s, vt 1, all the other 
2 Pus,~u being very small. Thus, in molecules with unpolar or weakly polar bonds it does 

not really make any difference in the hybrid basis whether we apply the full general 
correlation correction (31) or take just the bonding pairs Ps, vt. On the other hand, the 
interference correction can easily be applied selectively to those fl parameters that corre- 
spond to a covalent (or nearly covalent) bond. As a criterion for "near covalency" we 
take the threshold P~s, vt >I 0.7, for all other ~ parameters we set fl = ft. 

The hybrid orbitals that serve as basis for the two corrections are constructed in the 
following way: 

1. Localization of the canonical SCF-MO's by the method of Boys [14]. 
2. From the n x m matrix of  the localized MO's (n = number of  basis functions, 

m - number of occupied MO's) we take the block belonging to atom ~ and cal- 
culate the norms of the m column vectors of this block. If k denotes the number 
of bonds involving atom g plus the number of lone pairs at/~, then the k vectors 
with the largest norms constitute the new hybrid AO basis at/~. 

3. These hybrids are directed along the localized bonds reached at by the Boys 
localization but are not orthonormal. We construct orthonormal AO's by the 
LSwdin procedure [15] because in this way the symmetry properties of the AO's 
are retained and the final basis resembles the non-orthogonal one as closely as 
possible. 

4. If  the number of basis functions at atom/1(1) is larger than the number of hybrids 
(k) we construct 1-k more hybrids by the Schmidt method. These additional 
hybrids do not influence the following calculations and can therefore be chosen 
rather arbitrarily. 

The steps 2-4 have to be performed for every atom/~, and finally one gets a block-diagonal 
unitary matrix that transforms the original AO basis into the desired hybrid basis. As we 
have seen, the total bond order of ~t is not affected by this transformation but the bond 
orders are "localized" in the bonds. 
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4.3. Rotational Invariance 

In many semiempirical methods there exists the problem that by introduction of certain 
approximations the energy and other molecular properties become dependent on the 
orientation of the molecule in the co-ordinate system that serves as frame for the approxi- 
mations. In order to enforce "rotational invariance" one usually averages over local (one- 
centre) p-orbital components within the two-electron integrals. This procedure leads to 
rather large errors [16], especially in the case of  a strongly anisotropic environment of  an 
atom in a molecule. 

If we would perform our calculations totally in tile hybrid basis described above, our total 
energy as well as the energy fragments would be rotationally invariant. But this would 
require a transformation of the two-electron integrals, a very time-consuming step that we 
want to avoid. Therefore, the splitting of the two-electron integrals into quasiclassical and 
interference parts (19) is done in the original AO basis. This has the consequence that the 
energy fragmentation (not the total energy!) gets a bit orientation dependent but even in 
the most anisotropic cases this dependence amounts to a few per cent only. 

Consider for example the F2 molecule (minimal basis), one of the worst cases as regards 
rotational dependence. The orientation of the p-orbitals is fixed along the co-ordinate 
axes, and the nuclei are a) placed on the z-axis, b) rotated around the x-axis by 45 ~ The 
values of the/3 parameter that corresponds to the o-bond in the hybrid basis are 
a) -0 .2655 ,  b) -0 .2791 ,  thus the variance of/3 amounts to ~ 5%. The corresponding 
change of E(av ) (33) is compensated by a change mainly of E (1). 

Since the interference correction (32) always compensates a certain percentage of  the 
correlation correction (31) we have only to consider the rotational dependence of the 
latter. The correlation correction is calculated in a hybrid basis, so the only source of 
rotational dependence is the fact that the Boys localization is an iterative process that is 
terminated when a given convergence threshold has been reached. Different basis repre- 
sentations of the molecular density can therefore lead to slightly different hybrids. In the 
F z example (the worst case we could find) the correlation corrections differ by 2%. For 
comparison, consider at the other extreme the nearly isotropic molecule CH4 in the 
following orientations: a) the protons occupy the corners of a cube with planes parallel 
to the co-ordinate axes, b) situation a) rotated by 45 ~ around the z-axis. In this case the 
correlation corrections differ by only 0.1%. 

In summary, the rotational variance of our energy fragmentation amounts to a few per 
cent of the correlation correction only and is thus negligible compared to the inherent 
approximations of the method. It is desirable, however, to fix the relative orientation 
of the AO basis as uniquely as possible in order to make the results easily reproducible. 
For this purpose we follow an idea by Halgren and Lipscomb [17] : the p-orbitals at 
each of the atomic centres are transformed to the local principal axes. These principal 
axes are obtained as eigenvectors of a matrix U u with elements 

U~t = ( Xuslh Ix~)  

where/~ is the molecular one-electron operator and Xus, )~ut are p-orbitals at centre/~. 
By this procedure only those p-orbitals are not uniquely defined that belong to a two- or 
three-dimensional representation of the local symmetry group. For example, in ethane only 
one and in methane none of the p-orbitals is fixed but here the environment of the un- 
fixed orbitals is rather "isotropic". Thus, the rotational variance of the energy analysis is 
reduced to < 1% of the correlation correction in all of the molecules considered. 
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4.4. Basis Dependence o f  the Corrections 

Now we know how to handle the initial AO basis during an energy analysis calculation. 
Before the integral evaluation the p-orbitals are transformed to local principle axes, and 
before the correlation correction is applied one has to transform to a hybrid basis accord- 
ing to Sect. 4.2. But we still have to examine the dependence of the correlation and inter- 
ference corrections on the size, that means flexibility, of the basis. To this end we turn our 
attention to the H 2 molecule again where the essential features of the basis dependence can 
be demonstrated most clearly. 

In H2 one has always P~,v = 1, so the correlation correction is proportional to the difference 
between the one- and two-centre Coulomb integrals 

(ma luu) - ~v l  vv) 

of those hybrids Xu, Xv that form the bond. It is apparent that this difference will be the 
smaller the better Xu, X~ are localized into the direction of the bond. Thus, compared to 
Xt~, • being simply hydrogen ls orbitals, a scaling of the orbitals (contraction) will enlarge 
the correlation correction whereas addition of polarization functions (Pz) will reduce it. 

The interference correction (17) amounts to a multiplication of/3 by a factor 

S + S  2 
FI= 

1 +S  2 

Again, the better the hybrids are directed towards each other, the larger is their overlap, 
the nearer is Fx to 1, and the smaller the effect of the interference correction. 

For the following discussion let us consider three different basis sets: basis I consists of 
two hydrogen ls functions (10 Gaussians contracted to one group [18]), in basis II the 
contraction is (7, 2, 1), i.e. this basis allows for scaring, and basis IIl  contains an additional 
polarization function Pz (7 = 0.65). Table 2 shows the factor F1 and the/3 parameter for 
different distancesRHH in basis I and I I I . / ; i  is considerably larger in the flexible than in 
the minimal basis, and in addition, I/31 is significantly smaller. As a result, in basis III the 
interference correction (17) is negligible at all internuclear distances. We conclude that 
the VB formula (11) for the interference energy is the proper choice for a minimal basis, 
but in a flexible basis there is not much difference between (10) and (11). 

Another important feature of the basis dependence is shown in Fig. 3. Here the potential 
curves of H2 in basis I, II, III are compared with the "exact" one [19] and the SCF energy 
in basis III. At small and intermediate distances the (3s) basis II is comparable to a scaled 
minimal basis (see Fig. 2), and the most flexible basis shows considerably smaller deviations 

Table 2. Interference correction factor F I and ~ of H 2 
in different basis sets 

Basis I Basis III 

RH_H [ao] F I It31 F I it31 

1.0 0.918 0 . 1 0 9  0 . 9 8 9  0.062 
1.4 0.842 0 . 1 3 1  0 . 9 6 7  0.069 
2.0 0.692 0.127 0.890 0.088 
3.0 0.419 0.084 0.692 0.069 
5.0 0.105 0 . 0 2 3  0 . 4 4 7  0.001 
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Fig. 3. Potential curves of H 2 with basis I 
(-  - -),  II ( . . . . .  ), and III( . . . . . . . . .  ), 
compared with the SCF energy in basis III 
and the "exact" [19] curve (-- ). 
For details see text 

from EscF, as we have expected. But at large distances only basis I shows the proper 
asymptotic behaviour, whereas II and III for R ~ converge to an energy limit of AE = 
0.028 a.u. The reason for this behaviour is the equivalency of our procedure of subtract- 
ing �89 ] p/z) from the SCF energy and the "half electron" method applied to two 
separated hydrogen atoms [20]. Therefore, for R -->oo our hybrid AO's do not converge 
to hydrogen ls orbitals but to the more diffuse orbitals one gets by the half electron method. 
The energy of H within this method is indeed too high by 0.014 a.u. [21] in agreement 
with our limit. 

We conclude that in our formalism the use of flexible basis sets is justified only at small 
and intermediate distances because only a minimal basis can ensure the proper asymptotic 
behaviour for R -+ ~. Nevertheless, it should be noted that even with a flexible basis the 
error of the energy limit for R -~ oo is an order of magnitude smaller in our formalism 
than in the SCF approximation. 

5. Results 

Most of our energy analysis calculations have been done within a minimal Ganssian type 
AO basis (if not stated otherwise) chosen in the following way. 

H in H2: (108) basis from [18] contracted to one function (with appropriate scaring 
factor) 

H in other molecules: (3s) from [18], contracted to one function with scaling factor 
1.3 

Li, C-F: (9s) (Li) and (Ts, 3p) basis (C-F) from [22]. The first five s functions (7 in 
Li) were contracted to give the ls orbital, the remaining two forming the non-ortho- 
gonal 2x orbital. Orthogonality was obtained by adding two more energy optimized 
s functions, the resulting 2s orbitals are given in the appendix. The three p functions 
were fully contracted. 
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In some calculations (especially in hydrocarbons) a "flexible basis" has been employed: 
by this we simply mean a contraction of the three p functions into two p groups (2, 1). 

The experimental value s for equilibrium distances R e and binding energies 2d~ were taken 
from [23] and [24]. 

5.1. Two-Electron Interference Contributions 

Suppose that an MO-LCAO wave function of  a given molecule is already at hand. Then 
the energy analysis formulated above still requires the calculation of all of the ~N4/8 
(N = dimension of the AO basis) two-electron integrals for the evaluation of the two-elec- 
tron interference contributions (19). It is of considerable interest whether we can neglect 
the four- and three-centre parts of these contributions, i.e. whether the Mulliken approxi- 
mation can be applied to the four and three-centre integrals. 

In a paper by Brown and Burton [25] on the NDDO approximation it has been shown 
that neglect of four- and three-centre two-electron integrals (if "balanced" by a neglect 
of the one-electron three-centre terms) can give reasonable results as regards the relative 
ordering of one-electron energies. As we are interested in total energies our situation is 
much more crucial in spite of the fact that we are considering only the interference part 
of the two-electron integrals. 

The binding energies of Ctt 4 and C2H6 in different approximations are given in Table 3. 
"A" denotes the total binding energy, "B" neglect of four-centre two-electron contribu- 
tions, and "C" neglect of four- and three-centre contributions. "D" is a "balanced" 
version: in addition to C the three-centre one-electron interference contributions are 
neglected as well, i.e. the Mulliken approximation is applied to the three-centre penetra- 
tion integrals. Table 3 shows that in a medium size molecule like C2H6 even the four- 
centre two-electron interference contributions constitute a considerable fraction of the 
binding energy. The balanced version D is in error by about 20% in CH 4 and 25% in 
Cz H6, thus for the purpose of our analysis we have to take into account all of the two- 
electron interference contributions, and this is done in the results presented below. 

5.2. Physical Significance of the Energy Fragments 

In the derivation of Sect. 3 we have generalized the definitions of promotion, interference 
and quasiclassical energy that originated from the H~, He comparison. But it is not 
immediately apparent that our generalized definitions (see Eqs. (33, 34)) are still physi- 
cally meaningful, i.e. are still consistent with the concepts on which the energy analysis 
is based. 

-(~) Let us first consider the quasiclassical energy EQC between two atoms/1 and v./zhu is 
the sum of the repulsive electron-electron and nucleus-nucleus and the attractive electron- 

Table 3. Binding energy (in a.u., experimental geometry) in 
different approximations (see text) 

A B C D exp 

-zXE CH 4 0.657 0.660 0.156 0 . 7 9 6  0.625 

C2H6 1 . 1 0 4  0.930 <0 1.374 1.063 
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nucleus interactions, and at large internuclear distances R one has E ( ~  = 0 because each 
interaction term is proportional to 1/R. When R is decreased the electron clouds of ~ and 
v eventually begin to overlap, the electron-electron interaction increases slower than 1/R, 
and E ( ~  becomes negative. At still smaller R the nuclei begin to penetrate into the electron 
cloud of  the other atom, and now the nucleus-nucleus repulsion dominates the other 
quasiclassical interactions. Thus, we expect E ( ~  to exhibit a potential curve-like functional 
behaviour and this has indeed been confirmed in all types of bonds calculated so far. (The 
only small deviation is due to the fact that the correlation correction is performed within 
a hybrid AO basis affecting a maximization of the first term in (31). Because the basis 
dependence of the correlation correction is largest (though still relatively small) at inter- 
mediate distances, one can get for R < ~ a small positive EQC before it drops down to 
its minimum for smaller R.)  

Still there remains a problem with the definition Of EQc because it depends on the 
Mulliken charges q. As is well known, these charges are strongly basis dependent and for 
heteropolar bonds sometimes give quite unreasonable descriptions, e.g. for hydrocarbons 
with a minimal basis. For CH 4 we get a charge on hydrogen of only 0.79, and accordingly 
rather large quasiclassical interactions: 

E ~ = - I . 8 e V  E(r~H) = 0 . 3 3 e V  ~ E ( ~ = - 5 . 1  eV 
#<v 

If we use a flexible basis on C we get q n  = 0.87 and 

E(2) = - 0 . 2 6  eV E (2) = 0.12 eV ~ E ( ~  = - 0 . 3 5  eV CH HH 

Another effect of  the large negative excess charge on C in minimal basis hydrocarbons is 
an unphysical negative promotion energy Ep of C. Thus, for a reasonable energy fragmen- 
tat ion of hydrocarbons we have to employ a flexible basis on C. 

We now have to show that the Ep term in (34) actually can be regarded as a sum of pro- 
motion energies. This is not  clear from the outset because of our peculiar bond order 
definition. In Table 4 we compare our Ep values with promotion energies from [4] 
(minimal basis MO-LCAO calculations) as well as the respective "valence energies". In our 
formalism the valence energy E v differs from E e in the term E(~ 2) (Eqs. (33, 34)). Instead 
of E (2) the valence energy contains the one-centre two-electron terms from Eq. (30). For 

Table 4. Ep and E V compared to promotion and valence energies (in eV, 
at experimental geometries). The hydrocarbons and H20 have been 
calculated with a flexible AO basis 

Promotion Valence 
Atom/Molecule Ep Energy [4, 26] E V Energy [4] 

HinH 2 0.5 a 0.5 b 5.6 a 3.5 b 
Liin Li2 0.2 -0.1 1.7 1.7 
CinC2 4.1 6.1 18.7 18.9 

C in CH 4 3.3 6.5 21.5 - 
C 2 H  4 3.1 6.8 20.5 - 
C2H2 6.3 7.2 23.8 26.0 c 

N in N2 16.4 8.1 30.3 22.2 
Oin H20 10.9 8.0 22.0 18.8 
F in F2 1.4 1.7 7.6 8.7 

a Scaling factor 1.193. 
b Calculated with a Weinbaum 

function [9]. 
c C in HCN. 
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hydrocarbons comparison is made with promotion energies from [26] that have been 
obtained in the following way: the energy of the isolated atom is calculated with AO's 
restricted to s, p, sp, sp 2 , sp 3 form, the charges qus are chosen as integers, and the energies 
of the different spectroscopic terms belonging to the given configuration are averaged over. 

The numbers in Table 4 compare reasonably well, with the exception of N2. The excep- 
tional bonding situation in this molecule is reflected in our analysis and will be discussed 
in detail in Sect. 5.4. The other deviations in Table 4 are easily explained. In Sect. 2 it was 
shown that a MO wave function of H 2 gives too much one-centre pair density whereas 
the Weinbaum function is rather accurate in this respect: this explains the difference in 
the valence energies of H2. The promotion energies of hydrocarbons from Ref. [26] have 
been calculated with integer AO charges, therefore an exact reproduction of these values 
would be fortuitous. Finally, H20 is a very polar molecule (therefore calculated with a 
flexible basis) and in an energy analysis of it one should introduce special charge transfer 
terms, as is done in [4]. So our Ep and E v values contain some charge transfer effects 
but their difference, i.e. the energy due to sharing penetration, compares favourably with 
[4]. This last statement is also true for N 2 . In summary, we are confident that the general- 
ization of the promotion and valence concepts in Sect. 3 is physically meaningful and 
that Ep corresponds to the pictorial promotion concept, at least in molecules with 
unpolar or weakly polar bonds. 

The third term in (34), Ez, contains all the purely quantum mechanical interference effects 
that are responsible for bonding or antibonding. I fEQc and Ep are relatively small, as is 
e.g. the case for hydrocarbons (see Sect. 5.4),Ez is roughly equal to the binding energy. 
But in our model of bond formation obviously Ez and Ep should be strongly basis depen- 
dent (whereas Eac  should change relatively little with basis size). In a basis more flexible 
than minimal the electron density can better adjust to the molecular situation causing 
larger deviations from the free atom densities. The corresponding increase of Ep is, of 
course, overcompensated by a decrease of Ez giving rise to a small net decrease of the 
SCF energy. On the other hand, if the AO basis is further enlarged, Ep as well as Ex should 
converge to some fimit if there is any physical meaning associated with these quantities. 
Table 5 shows the basis dependence of the binding energy fragments of H2 and F z . 
Apparently, the results are consistent with our model considerations giving support to the 
soundness of the underlying assumptions. 

Finally we want to mention that Eq. (34) can serve as starting point for an examination 
of assumptions and approximations of some current semiempirical methods. EQC is 
relatively small at intermediate internuclear distances, and if the two-electron part of Ee 
can be neglected as well we have justification for a "one-electron" expression of the 

Table 5. Binding energy fragments and total binding energy (in a.u.) 
of H2 and F 2 in different AO basis sets (experimental geometry) 

H2 F2 

a b c a b e 

EQC -0.021 -0.020 0.048 0.003 -0.037 -0.050 
Ep 0.036 0.166 0 . 1 5 1  0 . 0 7 7  0 . 5 2 4  0.619 
E I -0.185 -0.323 -0.341 -0.140 -0.548 -0.616 

AE -0.169 -0.179 -0.142 -0.060 -0.061 -0.047 

a Minimal basis; scaling factor 
in H 2 1.193. 

b H2 : basis II of Sect. 4.4; 
F2: flexible basis. 

c H2 basis III of Sect. 4.4; F2: 
complete decoupling of the 
two 2s and three 2p Gaussians. 
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binding energy that can be compared with the further simplified semiempirical methods. 
These problems will be dealt with in a forthcoming paper [27]. 

5.3. Equilibrium Distances and B&ding Energies 

In our derivation we have corrected the SCF energy for the left--right correlation in an 
approximate way, so one should expect our binding energies to compare considerably 
better with experiment than the SCF results. On the other hand, equilibrium distances 
as given by SCF calculations usually are surprisingly accurate even in minimal basis. It 
is clear from the discussion in Sect. 2 that at intermediate bond lengths both the sharing 

penetration and the interference SCF energies are considerably too large in absolute 
value. But in the neighbourhood of  the equilibrium distance Re both errors partly cancel 
each other, and what is more important for the determination of Re there is a nearly 
complete cancellation of  the variations of  both errors with distance. We cannot expect 

that after application of  the two approximate corrections (31, 32) there will be an equally 
good cancellation of  the remaining errors, so our equilibrium distances will in general 

show larger deviations from the experimental results than do the SCF distances. 

In Table 6 equilibrium distances Re and binding energies 2xE calculated with Eq. (34), 

with and without  interference correction (32), are compared with the experimental and 

SCF values. In addition to homonuclear diatomics and hydrocarbons two polar molecules 
are included for comparison. As one would expect, our formalism works best with bonds 
similar to H2, i.e. the C-C and C-H bonds in hydrocarbons. The equilibrium distances 

obtained for these molecules are only a few per cent larger than the SCF values, whereas 
the binding energies are in remarkably good agreement with experiment. In the homo- 

nuclear diatomics one has bonding situations differing very much from H 2 . Indeed, despite 
their unpolar nature these molecules are rather hard test cases for approximate quantum 

Table 6. Equilibrium distances (in a0) and binding energies (in a.u.) with (A) and without (B) inter- 
ference correction (32). The calculated equilibrium distances are given in percentage deviation from 
the experimental values, all the calculated equilibrium distances are too large (zXR e > 0). All calcul- 
ations have been done with a minimal AO basis 

exp A B SCF 

Bond R e zXE ZxRe(% ) ZXE zXRe(% ) zXE ZkRe(% ) zXE 

H2 1.40 -0.175 3 -0.170 9 -0.225 0 
Li2 5.05 -0.042 14 -0.026 25 -0.045 5 
C2 2.34 -0.234 16 -0.193 11 -0.376 14 
N2 2.08 -0.364 11 -0.182 20 -0.372 8 
F2 2.72 -0.062 16 -0.082 13 -0.184 1 

CH4/RcH 2.05 -0.625 7 -0.675 15 -0.834 2 
C2H6/Rcc a 2.93 -1.063 9 -1.113 14 -1.274 3 
C2H4b/Rcc 2.55 -0.846 8 -0.870 13 -1.016 3 
C2H2/Rcc e 2.27 -0.618 7 -0.656 12 -0.784 2 
cHCR 2.00 -0.618 8 -0,655 13 -0.787 4 

CO/Rco 2.17 -0,413 11 -0.290 17 -0.426 8 
CO2/Rco 2.19 -0,608 12 -0.432 16 -0.670 5 

-0.128 
-0.009 

0.020 
0.004 
0.053 

-0,516 
-0,860 
-0,637 

- -  0.425 
- 0.429 

-0.137 
-0,153 

a Geometry as in [28], all angles and distances fixed except RCC. 
b RCH = 2.034ao ~ HCH = 117 ~ 
c The other distance fixed at the experimental value. 
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mechanical methods, including the SCF approximation. Also, semiempirical methods 
that fit the same number of parameters per atom in general describe the hydrocarbons 
much better than the homonuclear diatomics, especially as regards the binding energy (see 
e.g. [29] ). In view of this we conclude that our binding energies of the homonuclear 
diatomics, differing by "only" 20-50% from the experimental values, are surprisingly good. 
The equilibrium distances show rather large deviations from experiment that can be 
explained by the effect of  the interference correction. This correction was introduced in 
order to partly compensate for the too large correlation correction, and Table 6 shows 
that without interference correction (B) both Re and 2xE are much too large in absolute 
value. Now the compensating interference correction (32) treats every bond like H2, there- 
fore the reduction of Re in H2 by a few per cent is also accomplished in hydrocarbons. 
The equilibrium distances of the homonuclear diatomics do not show such uniform 
behaviour and this reflects their peculiar bonding situations. The molecules CO and CO2 
should not be too polar for a reasonable description by our formalism, and the results 
for these molecules are indeed rather similar to N2. 

Note that all calculations of Table 6 have been performed in a minimal basis. If a flexible 
basis is used, 2~  in most cases changes by less than 10%, and z2x/~ e slightly decreases or 
remains the same. The largest effects of a flexible basis are shown by N2 and F 2 where one 
gets substantial improvement (version A): 4 % / - 0 . 2 8 6  a.u. for N2 and 7% / -0 .072  a.u. 
for F2. 

5.4. Analysis of  Binding Energies 

After having shown that the energy partition (34) is physically meaningful and corresponds 
to our qualitative picture of bond formation, at least for not too polar bonds, we finally 
want to examine how different bonding situations show up in the behaviour of the bind- 
ing energy fragments. Let us briefly recall the essential differences between the energy 
partition in the H~ molecule and the general case. In H~ (Sect. 2.1) the definition of the 
energy fragments (quasiclassical, promotion, and interference energy) based on pictorial 
model considerations was a rather straightforward matter. In general there are a number 
of additional terms due to electron-electron interaction that we have dealt with in the 
following way: 

a) Coulomb and exchange two-electron interactions; these we have split into quasi- 
classical and interference contributions. 

b) Electron correlation, approximately taken into account by the correction of the 
wrong asymptotic behaviour of the MO-LCAO energy. 

c) Sharing penetration, totally neglected by the same correction (b) but afterwards 
again corrected for by a reduction of the interference energy. Only by this "trick" 
did it become possible to interpret the one-centre termsEp as promotion energies. 

Thus, the quasiclassical and promotion energies of Eq. (34) are "natural" extensions of the 
corresponding terms in H~-. The interference energy, on the other hand, contains in addition 
to the one-electron interference terms the other essential non-classical contributions. These 
are the two-electron interference terms and that part of the sharing penetration that 
remains after correcting the MO-LCAO energy for left-right correlation. The importance 
of sharing penetration has already been shown in Table 6 (version B versus A) whereas 
we still have to examine whether the two-electron part of Ex can perhaps be neglected. 
Certainly, the gus, vt terms (Eq. (21)) cannot be neglected as regards the total binding 
energy (Sect. 5.1) but only a small part of  these contribute to EI. Nevertheless, as is shown 
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Table 7. One-electron (E(1)) and two-electron (E (2)) 
contributions to E I (in a.u.) 

E~ 1) E/(2) E I 

H2 -0.187 0.002 -0.185 
N2 -0.765 -0.051 -0.816 
F2 -0.098 -0,042 -0.140 
CH4 -0.679 -0.199 -0.878 
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in Table 7, the two-electron contributions in general constitute a considerable fraction of 
Ex and can safely be neglected only in the H2 molecule. Hardly surprising, we conclude that 
in an attempt to describe the chemical bonding one cannot dispense with non-classical two- 
electron effects without a serious loss of accuracy both in the calculated results and in the 
physical model of bonding. 

At this point we want to ment ion that there are two-electron effects not  explicitly taken 
care of in our scheme, i.e. mainly angular and in-out  correlation. Whereas at large inter- 
nuclear distances these effects are negligible they are of the same order of magnitude as 
the left-right correlation at small distances, but  unfortunately there is no possibility of 
including them in a simple way. One could argue that the total neglect of sharing penetra- 
tion partly accounts for these additional correlation effects, but  this, presumably, would 
be too bold. 

We are now prepared to attack the final problem of this work, i.e. the elucidation of 
different bonding situations by binding energy analysis. In Table 8 we present the results 
for the first row homonuclear diatomics, some hydrocarbons, and the polar molecules 
CO and H20.  

The quasiclassical energy EQC is very small for molecules with unpolar single bonds. The 
relatively large value of  C2H6 is partly due to the improper Mulliken charges (Sect. 5.2) 
even in a flexible basis (qH = 0.86) but  EQC per bond still has the same magnitude as in 
H2. According to our discussion in Sect. 5.2 EQC of double and triple bonds should be 

Table 8. Binding energy fragments and total binding energy 
(in a.u.) at the experimental geometries. Hydrocarbons and 
H20 are calculated with a flexible AO basis, the other mole- 
cules with minimal basis. Scaling factor in H2 is 1.193 

EQC Ep EI ~ zxE (exp) 

H2 -0.021 0.036 -0.185 -0.169 -0.175 
Li2 -0.015 0.021 -0.020 -0.023 -0.042 
C2 -0.242 0.298 -0.258 -0.202 -0.234 
N2 -0.533 1.198 -0.816 -0.151 -0.364 
F2 0.003 0.077 -0.140 -0.060 -0.062 

CH4 -0.013 0.204 -0.878 -0.687 -0.625 
C2H6 -0.156 0.216 -1.220 -1.160 -1.063 
C2H4 --0.119 0.321 --1.143 --0.941 --0.846 
C2H2 -0.132 0.521 -1.107 -0.727 -0.618 
CH2 -0.030 0.320 -0.552 -0.262 -0.288 

CO -0.592 1 .051  -0.701 -0.242 -0.413 
H20 -0.178 0.148 -0.253 -0.283 -0.350 
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larger because of the larger overlap between the atomic densities, and this is confirmed by 
the results in Table 8. The most extreme value Of EQc among the unpolar molecules is 
shown by N 2. Obviously, this cannot be attributed to the triple bond, as is shown by a 
comparison with C2H2, but to the unusually strong polarization of the atomic densities 
into the bonding region. In acetylene the two protons serve as opposing forces that prevent 
the bond from such a strong polarization. 

The promotion energy EF exhibits a pattern somewhat similar to EQC: how can this 
behaviour be explained? There are four effects contributing to Ep. The scaling contribu- 
tion is relatively small: although the scaling factor in H2 is extreme and Ep in this mole- 
cule is solely due to scaling one gets only 0.036 a.u. More important are atomic "excitations" 
in the preparation for bonding, especially the ls 2 2s 22p 2 ~ ls 22s2p 3 process of C in 
hydrocarbons. Our expectation that this contribution (that one could denote as "promo- 
tion in the classical sense") should constitute the main part of E~o in CH 4 and C2H 6 (the 
two Ep values should differ by a factor of ~2 )  is not born out by our results. This is due 
to the third contribution to Ep, charge transfer, that is zero in homonuclear diatomics 
and should be very small in saturated hydrocarbons but actually is not in our calculations. 
So it is Ep where the deficiencies of our charge order definition come in, not EQC where 
the different charge transfer contributions largely cancel each other. Finally, in molecules 
with double and triple bondsEp is dominated by the fourth contribution, a large polariza- 
tion of the atomic densities into the bonding region. Now it is clear that such a polarization 
causes a strong penetration of the atomic charges and thus a decrease of EQc. This means 
that there is a certain coupling between Ep and EQC in these molecules, and that a large 
part of EQc can be classified as "promotion-induced" quasielassical energy. Again N2 
shows the most extreme value of Ep reflecting its strong polarization. In comparison, the 
promotion energy of C2H2 is only half as large. Below we shall say a few more words 
about the "pathological" case of N2. 

The interference energy E1 contains, as we know from Sects. 2 and 3, all the quantum 
mechanical effects that are responsible for chemical bonding. This does not mean, however, 
that E x in general is the dominating term in our fragmentation of the binding energy. Only 
in molecules with "H 2-like'' bonds have we E I ~ AE, e.g. in saturated hydrocarbons. In I52 
we find very small EQC and Ep values and the overlap between the 2s orbitals that form 
the bond is almost as large as that between the ls AO's in H2, so we have in some sense 
an H 2-like character of the Li 2 bond. The peculiar features of this bond are due to the 
diffuseness of the 2s orbitals, Therefore the lowering of the kinetic energy in the bond 
direction [6] (or the "contragradience" [3] ) that is responsible for bond formation has 
to be rather small, and indeed the three fragments of zXE are all of the same order of 
magnitude. 

Table 8 shows clearly that the bonding situation in Li 2 is rather "untypical" for unpolar 
single bonds. In fact, H 2 is a much better prototype for this type of bond, despite of the 
fact that the Li atom has a core whereas H has not. 

In F 2 and the unsaturated hydrocarbons, where EQc is still negligible in contrast to Ep, 
our results correspond to the usual concept of bonding in unpolar molecules, namely: the 
essential reason for bonding as well as the largest part of the binding energy are due to 
interference, though 2~E can further be lowered by some promotion. The minimal zXE is 
the optimal compromise between promotion and interference, i.e. by further promotion 
Ep would increase faster than Er  would decrease. It is then just this point of optimal 
compromise where the wave function satisfies the virial theorem. 
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In most molecules we can adopt this view of bonding but there exist the exceptional cases 
of C2 and N 2 where not only I Ep I > I E rl but also EQC < AE. Here one could argue that 
the quasiclassical interaction alone is sufficient to ensure bonding, so why should pro- 
motion occur at all? 

But let us recall that a very important part of Ep is the polarization of atomic densities 
into the bonding region and that this polarization should more or less lower EQr So we 
can suspect that in any molecule promotion lowers both E1 and EQC but apparently the 
lowering Of EQc is, in general, too small to substantially influence the extent of promotion. 
Only in N2 and C2 is the polarization into the bond so strong, associated with a pronounced 
decrease OfEQc , that a further promotion "pays" for the binding energy. Thus, E~r as well 
as EQc contain a negative part that we would get without polarization promotion and a 
second part, also negative, that can be regarded as induced by polarization (i.e. hybridiza- 
tion) promotion. 

Finally, in order to demonstrate the influence of bond polarity on the energy fragmentation 
we have included in Table 8 two polar molecules. The weakly polar CO shows energy frag- 
ments very similar to N2, whereas the energy terms of H20 are quite different from those 
of CH2. This diffeTence is due to charge transfer terms that we have not separated in our 
formalism. 

6. Conclusions 

We have developed a scheme for analysing the chemical bond by a fragmentation of the 
binding energy into interference, promotion, and quasiclassical contributions. Our scheme 
is closely related to that of Ruedenberg [2] but it is much simpler because a) it is based on 

the MO-LCAO approximation corrected for left-right correlation, b) it is focused on a 
simple model of bonding, c) certain terms are grouped together on physical reasoning. 

It is not easy to reconcile the MO picture with a correct dissociation behaviour but we 
have to use the MO framework if we want to have some relation to existing theories of 
bonding. The usefulness ofab initio MO calculations as regards equilibrium geometries 
can be attributed to the fact that the positive two-electron energy as well as the negative 
interference energy are overestimated by nearly the same amount at small internuclear 
distances. Our approximate correction for left-right correlation leads to a certain combi- 
nation of MO and VB formulae, and this idea goes back to Mulliken [8]. 

Since our formalism is not restricted to minimal basis calculations we can in principle 
reach the SCF limit but there seems to be no simple way to approximately include corre- 
lation effects other than left-right correlation. 

The concepts of bonding that originated from an examination of the binding energies of 
H~ and H 2 turn out to be transferable to other molecules, except that the Mulliken 
approximation does not hold in general, i.e. two-electron interference effects have to be 
included into the interference energy. Also, the combination of correlation and interference 
corrections work well for bonds "similar" to H 2 if they are applied in a proper hybrid AO 
basis. In the general case there are perhaps improvements possible by taking into account 
sharing penetration effects that are neglected in the present formalism. Furthermore, for 
an extension of the formalism to polar bonds one certainly has to separate off charge trans- 
fer terms as a fourth contribution. Heteronuclear bonds also reveal the strong dependence 
of the Mulliken charge order definition on the size of the basis. Unfortunately, it seems to 
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be rather difficult to incorporate a more basis independent charge order into our scheme, 
because after the spirting of the two-electron integrals into quasiclassical and interference 
parts (see Eq. (19)) the Mulliken charge order occurs "naturally" in our formulae. Finally, 
a special problem is posed by molecules with conjugated double bonds where the general 
interference correction is not applicable. 

The rotational variance of the binding energy is kept very small by the use of a hybrid AO 
basis and by the transformation ofp-orbitals to local principal axes. The dependence of 
the energy fragments on the size of the basis is negligible for the quasiclassical and very 
large for the promotion and interference terms. It has been shown that this dependence 
is completely consistent with our physical model of bonding. 

Potential curves calculated with our energy formula are not competitive with accurate 
calculations but show a qualitatively correct behaviour. The equilibrium bond lengths are 
somewhat poorer than SCF results (consistently too large) whereas binding energies are 
considerably better. 

The analysis of binding energies shows that some kinds of bonds may indeed by regarded 
as "H2-1ike". These are the single bonds in hydrocarbons and, to a certain degree, the Li2 
bond. In the latter case one has an unusually small interference part. In unsaturated 
hydrocarbons the special features of the double and triple bonds show up in the quasi- 
classical and promotion part of the binding energy. The homonuclear diatomics C2, N2 
and F2, that are rather tough molecules even for semiempirical methods, show very 
special features. Although their peculiarities can be reasonably explained on physical 
arguments it is apparent that these molecules do not easily fit on the "bed of Procrustes" 
of a simple three-term model of bonding. 

Let us finally note that the structure of the equation for the binding energy (34) is such 
that it is easily related to certain semiempirical schemes. So it allows for an examination of 
some of their assumptions and approximations, and this will be the concern of a forth- 
coming paper [27]. 
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Appendix 

In the following tables the orthogonalized 2s orbitals are listed (~ = exponent, c = contrac- 
tion coefficient). 

Li c ~ C c 

-0 .1555998 1.7 -0 .105  21.0 
-0 .14548 0.46 -0 .2351868 3.9 

0.556791 0.07648 0.464259 0.56663 
0.544211 0.02869 0.652431 0.17717 
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e 

-0 .112 27.0 
-0.2331024 5.4 

0.503845 0.78115 
0.61795 0.23733 

c 

-0 .120  46.0 
-0.2367783 9.3 

0.509115 1.40145 
0.618129 0.41673 

O c "q 

-0 .11764 36.0 
-0.2339926 7.3 

0.507147 1.07056 
0.617813 0.32145 

Refe rences  

1. Mulliken, R. S.: J. Phys. Chem. 56, 295 (1952) 
2. Ruedenberg, K.: Rev. Mod. Phys. 34, 326 (1962) 
3. Goddard III, W. A., Wilson Jr., C. W.: Theoret. Chim. Acta (Berl.) 26, 211 (1972) 
4. Moffat, J. B., Popkie, H. E.: Int. J. Quantum Chem. 2, 565 (1968) 
5a. Feinberg, M. J., Ruedenberg, K., Mehler, E. L.: Adv. Quantum Chem. 5, 27 (1970) 
5b. Feinberg, M. J., Ruedenberg, K.: J. Chem. Phys. 54, 1495 (1971) 
5c. Ruedenberg, K.: The nature of the chemical bond, an energetic view, in: Localization and 

delocalization in quantum chemistry, Vol. I, Chelvet, O., Daudel, R., Diner, S., Malrieu, J. P., 
Eds. Dordrecht: D. Reidel Publishing Co. 1975 

6. Kutzelnigg, W.: Angew. Chem. 85,551 (1973) 
7. Mulliken, R. S.: J. Chim. Phys. 46,497, 675 (1949) 
8. Mulliken, R. S.: J. Phys. Chem. 56, 295 (1952) 
9. Weinbaum, S.: J. Chem. Plays. 1,593 (1933) 

10. Mulliken, R. S.: L Chem. Phys.  23, 1833 (1955) 
11. Cohen, I.: J. Chem. Phys. 57, 5076 (1972) 
12. Ruedenberg, K.: J. Chem. Phys. 34, 1861 (1961) 
13. Wiberg, K. B.: Tetrahedron 24, 1083 (1968) 
14. Boys, S. F.: Rev. Mod. Phys. 32, 296 (1960) 
15. L6wdin, P.-O.: J. Chem. Phys. 18, 365 (1950) 
16. Nicholson, B. J.: Adv. Chem. Phys. 18,249 (1970) 
17. Holgren, T. A., Lipscomb, W. N.: J. Chem. Phys. 58, 1569 (1973) 
18. Huzinaga, S.: J. Chem. Phys. 42, 1293 (1965) 
19. Kolos, W., Wolniewicz, L.: J. Chem. Phys. 43, 2429 (1965) 
20. Kollmar, H.: Chem. Phys. Letters 8,533 (1971) 
21. Jungen, M.: Theoret. Chim. Acta (Berl.) 11,193 (1968) 
22. Huzinaga, S.: Approximate atomic functions. Technical Report, Div. of Theor. Chem., The 

University of Alberta, 1971 
23. JANAF Interim Thermochemical Tables, Midland, Michigan: 1960 and revised Tables 1965 
24. Herzberg, G.: Molecular spectra and molecular structure, Vol. I and III. Princeton: Van Nostrand 

1966/67 
25. Brown, R. D., Burton, P. G.: Chem. Phys. Letters 20, 45 (1973) 
26. I-Iinze, J., Jaffe, H. H.: J. Am. Chem. Soc. 84, 540 (1962) 
27. Driessler, F., Kutzelnigg, W.: part II of this series (in preparation) 
28. Veillard, A.: Chem. Phys. Letters 3, 128 (1969) 
29. Klopman, G., Polak, R.: Theoret. Chim. Acta (Berl.) 25,223 (1972) 

Received April 2, 1976 


